1 Prerequisite Definitions

Alphabets ¥, and I are finite nonempty
sets of symbols.

A string is a finite sequence of zero
or more symbols from an alphabet.

Y* is the set of all strings over al-
phabet X.

€ is the empty string and cannot be
in X.

A problem is a mapping from
strings to strings.

A decision problem is a problem
whose output is yes/no (or often ac-
cept/reject).

A decision problem be thought of
as the set of all strings for which the
function outputs “accept”.

A language is a set of strings, so
any set S C X* is a language, even 0.
Thus, decision problems are equivalent
to languages.

2 Regular Languages

L(M) is the language accepted by ma-
chine M.

A deterministic finite automaton is
a 5-tuple M = (Q,X, 8,40, F), where

e () is a finite set of states,

e Y is an alphabet,

e 0:0xX — Qis a transition
function describing its transitions
and labels,

e ¢o € Q is the starting state, and

e F C (Qisasetof accepting states.
If 0 is not fully specified, we assume an
implicit transition to an error state.

A deterministic finite automaton M
accepts input string w = wiwy...wy
(w; € X) if there exists a sequence of
states rg,r1,72,...,1, (r; € Q) such that

® o = 40,

o for all i € {1,...,n}, r =

5(r,~,1,w,-), and

e r,cF.
ro,r1,r2,...,r, are the sequence of
states visited during the machine’s
computation.

A non-deterministic finite automa-
ton is a S-tuple M = (Q,X%,98,qo,F),
where

e 0.Y qo,F are the same as a

deterministic finite automaton’s,
and

e §:0x(Zu{e}) =29

A non-deterministic finite automa-
ton accepts the string w = wiw,...wy,
(w; € X) if there exist a string y =
yiy2--.ym (yi € ZU{€}) and a sequence
r=ro,r,...,r (r; € Q) such that

e w=yjoy0---oy, (e yisw

with some € inserted),

® 70 = qo,

o for all i = {l,....m}, r; €
6(ri-1,4i), and

o rp,cF.

The &-closure for any set S C Q is
denoted E(S), which is the set of all
states in Q that can be reachable by fol-
lowing any number of &-transition.

Theorem 1. A non-deterministic fi-
nite automaton can be converted to an
equivalent deterministic finite automa-
ton.

A regular language is any lan-
guage accepted by some finite automa-
ton. The set of all regular languages is
called the class of regular languages.

Theorem 2. Regular languages are
closed under

e Concatenation LjoLy = {xoy:

x€Ljandy € Ly}. Note: Ly £
LioL,.

e Union Ly UL, = {x : x €
LiorxeLy}.

e Intersection LyNLy = {x :x €
Lyand x € Ly}.

o ComplementL=Y*\L={x:x¢
L}.

e Star L* = {xjoxp0---ox;:x; €
L and k > 0}.

R is a regular expression if R is
ack,
g,
0,
RiURy, or Ry ’Rz,
Rl ORz, or R1R2,
ok
1>
Shorthand: X = (ai|az|...|ak),
a; € X,
where R; is a regular expression.
Identities of Regular Languages

QURoR*=RoR*Ueg=R*
(alb)* = (a*|p*)* = (a*b*)* =
(a*[b)* = (alp*)* = a*(ba*)* =
b*(ab*)*

e D)UR=RUOD=R
e)oR=Ro0=0

e EoOR=Roe=R
e £ =¢

o 0*=0

[]

[

Theorem 3. Languages accepted by
DFAs = languages accepted by NFAs =
regular languages

Theorem 4. If L is a finite language, L
is regular.

If a computation path of any finite
automaton is longer than the number of
states it has, there must be a cycle in
that computation path.

Lemma 1 (Pumping Lemma). Every
regular language satisfies the pumping
condition.

Pumping condition: There exists
an integer p such that for every string
w € L, with |w| > p, there exist strings
x,y,z € X" withw =xyz,y £ €,|xy| < p
such that for all i > 0, xyiz eL.

Negation of pumping condition:
For all integers p, there exists a string
w € L, with |w| > p, for all x,y,z € ¥*
with w = xyz,y # €, |xy| < p, there ex-
ists i > 0,i # 1 such that xy'z ¢ L.

Limitations of finite automata:

e Only read input once, left to

right.

e Only finite memory.

3 Context-Free Languages

A pushdown automaton is a 6-tuple
M= (0Q,%,T,6,q0,F), where

Q is a finite set of states,

Y is its input alphabet,

I' is its stack alphabet,
0:0x(Xu{e}) x(Tu{e}) —
20x(TU{e}) s jts transition func-
tion,

® go € Qis its starting state, and

F C Q is a finite set of accepting
states.

Labels: a,b — c: if input symbol is
a, and top of stack is b, pop it and push
c. In other words, input symbol read,
stack symbol popped — stack symbol
pushed, e.g. 0,€ — $.

Suppose u,v,w are strings of vari-
ables and terminals, and there is a rule
A — w. From the string uAv, we can
obtain uwv. We write uAv — uwv, and
say uAv yields uwv.

If uy — up — -+ — uy, then u; —*
uy, or uy derives u;. There must be a
finite number of arrows between u; and
Ug.

Given a grammar G, the language
derived by the grammaris L(G) = {w €

Y*: S —*wand S is the start variable}

Context-free grammar: the lhs of
rules is a single variable, rhs is any
string of variables and terminals. A
context-free language is one that can
be derived from a context-free gram-
mar. An example context-free gram-
mar is G = (V,X,R,(EXPR)), where

V. = {(EXPR),(TERM), (FACTOR)},
r = Aa+,x,0)} and
R = {(EXPR) — (EXPR) +

(TERM)|(TERM), (TERM) — (TERM) x
(FACTOR)|(FACTOR), (FACTOR) —
((EXPR))}.

A left-most derivation is a sequence
S — uy — uy = -+ — up — w where
each step applies a rule to the left-most
variable. A grammar is ambiguous
when it has multiple left-most deriva-
tions for the same string.

Theorem 5. A language L is recog-
nized by a pushdown automaton iff L is
described by a context-free grammar.

Theorem 6. Context-free languages
are closed under union, concatenation,
star.

4 Recognizable Languages

Differences from previous models

e The input is written on tape.

e [t can write to the tape.

e [t can move left and right on tape.

e It halts immediately when it

reaches an accepting or rejecting
state. The rejecting state must
exist but may not be shown.

A deterministic Turing
machine is a 7-tuple M =
(Q,Z, T, 5,%, Gaccept Qreject)’ where

e (O is its finite non-empty set of

states,

e Y is its input alphabet,

o ['is its tape alphabet (X C I" and

~eTl\Y),

e §:0xI' > OxI'x{L,R}isits

transition function,

® go € Q is its starting state,

® Guccepr € Q 1s its accepting state,

and

® Grejec: € Q 18 its rejecting state

(‘Ireject 7& Qaccept)-

Labels: a — b, R: if tape symbol is
a, write b and move head right. a — R:
if tape symbol is @, move head right.
a,b,c — R: if tape symbol is a, b, or c,
move head right.

On input x, a Turing machine can
(1) accept, (2) reject, or (3) run in an
infinite loop.

The language recognized by a
Turing machine M is L(M) = {x :
on input x, M halts in gaecepr). A lan-
guage is recognizable if there exists a
Turing machine which recognizes it.

Regular languages C context-free
languages C decidable languages C
recognizable languages

A configuration is a way to de-
scribe the entire state of the Turing
machine. It is a string agb where
ac€TI'™*,qg € Q,beTI™ which indicates
that g is the current state of the Tur-
ing machine, the tape content currently
is ab and its head is currently point-
ing at the first symbol of b. Any Tur-
ing machine halts if its configuration is
of the form aqucceptb, Or aqrejectb for
any ab. Config(i) uniquely determines
Config(i+1).

Theorem 7. Every k-tape Turing ma-
chine has an equivalent single tape Tur-
ing machine.

If the alphabet of the multitape Tur-

ing machine is I', we can make the
single tape Turing machine’s alphabet
(IT'U{#}) x {normal,bold}.

A non-deterministic Tur-
ing machine is a 7-tuple M =
(Qazara5aq07Qaccept7Qreject)7 where
the only difference from a determin-
istic Turing machine is the transition
function delta : Q x T — 2@xTx{LR},

A non-deterministic Turing ma-
chine accepts its input iff some node
in the configuration tree has Guecepr. It
does not accept its input iff the configu-
ration tree grows forever (infinite loop)
or no node in the tree has ggccepr-

Acceptance of a non-deterministic
Turing machine: input w is accepted if
there exist configurations cy,cy,...,Cx
where

® ¢ = GgartW, and

® ¢; = cit1 (cit1 1s a possible con-
figuration from c;, following the
transition function §).

The outcomes could be

e w is accepted, i.e. there exists a
node in the tree which is an ac-
cepting configuration,

e w is explicitly rejected, i.e. the
tree is finite but no node is an ac-
cepting configuration (all leaves
are rejecting configurations), or

e the non-deterministic Turing ma-
chine runs forever on w, i.e. the
tree is infinite but no node is
an accepting configuration (there
might be finite branches termi-
nating in a rejecting configura-
tion in the tree).

A Turing machien is a decider if it

halts on all inputs, i.e. it either rejects
or accepts all inputs.

Theorem 8. Every non-deterministic

Turing machine has an equivalent de-
terministic Turing machine. If that non-
deterministic Turing machine is a de-
cider, there is an equivalent determin-
istic Turing machine decider.

Theorem 9. Recognizable languages
are closed under union, intersection,
concatenation, star.

Implementation level description of
a multitape Turing machine for L =
{x#tx:x e {0,1}*}:
e Scan the first head to the right un-
til it reads a #. Move right. The
second head is still at the start of
the second tape.
e Repeatedly read symbol from the
first tape (reject if the symbol is
not O or 1), write it to the second
tape, and move both heads right,
until seeing a blank on the first
tape.
o Move the first head left until a #
is under it. Replace the symbol
with a blank (_).
e Move both heads left until they
reach the start of their respective
tapes (using the $ sign hack to
mark the start of the tape).
e Repeat until seeing a blank on
both tapes.
— If the symbols on the two
tapes differ, reject.
— Otherwise, move both head
right.
(O) is a string encoding for the ob-
ject O.

Cardinality of Sets: two sets A and
B have the same cardinality if there ex-
ists a bijection f : A — B.

N = {1,2,3,...} is the set of all

natural numbers. A set is finite if it has

a bijection to {1..n} for some natural
number n. A set is countably infinite
if it has the same cardinality as N. A
set is countable or at most countable if
it is finite or countably infinite.

Lemma 2. Any language L is count-
able.

Lemma 3. The set of all Turing ma-
chines is countable.

Lemma 4. The set 2 of all infinite bit-
sequences is not countable.

Lemma 5. 2% is uncountable.

5 Reductions

Aty = {(M,w) M accepts w}
and HALTTM = { <M, W>

M halts on input w} are recognizable
but not decidable.

Theorem 10. If L and L are recogniz-
able, then L is decidable (and so is L).

Lemma 6. A7y, is unrecognizable.

Proof template for undecidability
via Turing reduction: Reduce a prob-
lem known to be undecidable to that
language L, usually Ay, i.e. Ary <t
L. Assume a Turing machine decider
R for L. Construct S that decides A7y
using R.

Runtime of a determinis-
tic Turing machine is a func-
tion f: N — N given by f(n) =

MaXycx» |x|—p (0. of steps of M on input x).

TIME(t(n)) = {language L
Jdeterministic Turing machine that
decides L in time O(t(n))}.

P =0 TIME (n°)

EXP = o TIME(2")

Theorem 11 (Time hierarchy theo-
rem). If f: N — N is reasonable and
f = Q(nlogn) then TIME(f(n)) C
TIME(f(n)?).

Lemma?7. P C EXP

Runtime of a non-deterministic Tur-
ing machine is the height of the config-
uration tree.

NTIME(t(n)) = {language L
d non-deterministic Turing machine that
decides L in time 7(n) }

NP = J.>oNTIME (n°), i.e. lan-
guages for which it is easy to verify
membership.

Lemma 8. P C NP
Lemma 9. NP C EXP

Verifier-based definition for L €
NP: there exists a deterministic poly-
time Turing machine V and a constant
csuchthat L={xe€ X :Jyec X" |y| <
|x|¢,V accepts (x,y)}.

A function is polytime computable
if f:X* — X* if there exists a Turing
machine M that has x as input, runs for
time poly(|x|) and halts with f(x) writ-
ten on the tape.

f is a polytime reduction from lan-
guage A to language B, denoted A <p B
if (1) f(A) C B, (2) f(A) C B, and (3)
f is a polytime computable function.

Theorem 12. IfA <p Band B € P then
AcP.

A language L is NP-hard it A <p L
for all A € NP. A language L is NP-
complete if L is NP-hard and L € NP.

Theorem 13. If P £ NP, then there
exists language L such that L ¢ NP-
complete, L ¢ P, and L € NP.

Theorem 14. If (1) B is NP-complete,
(2) C € NP, and (3) B <pC, then C is
NP-complete.

CLIQUE 1is a language whose
strings are of the form (G, k), where
G = (V,E) is a graph and k € N, for
which there exists U C V with |U| > k
such that {u,v} € E for all distinct ver-
ticesu,v e U.

Theorem 15. CLIQUE is NP-
complete

Theorem 16. 3SAT <p CLIQUE
Theorem 17. 3SAT <p MAXCLIQUE

Reductions from 3SAT often in-
volves gadgets:

o Clause gadgets: for the as-

signemnt to pick a true literal in
each clause (a clique must pick a
vertex from each group)

o Variable gadget: force as-
signemnt to set each variable
either to true or false but not both
(a clique cannot pick both x; and
Xi).

INDSET is a language whose
strings are of the form (H,k), where
H = (V,E) is a graph and k € N, for
which there exists U C V with |U| =k
such that Yu,v € U,{u,v} ¢ E.

VERTEX — COVER is a language
whose strings are of the form (H,t),
where H = (V,E) is a graph and 7 € N,
for which there exists a set C C V with
|C| <t such that V{u,v} € E, either u,
vor both is in C.

Let G = (V,E) be a graph. Then
G=(V,E)where E = {{u,v}: {u,v} ¢

Lemma 10. U is a clique in G iff U =
V\U is a vertex cover in G. This im-
plies G has a clique of size > k iff G has
a vertex cover of size < n—k, where
V| =n.

Lemma 11. CLIQUE <p VERTEX —
COVER

Lemma 12. CLIQUE <p INDSET

Theorem 18. SAT is NP-complete via
a where

C=QuU{#IUT
Xijs =true < cellli, jl =
Pitars = X1,1,# A X120 N X130 A

/\XLnk,l._ /\)CLnk.#

ik
Doy = /\ (\/xi,j,s/\

i,j=1 \seC

N g Axije)

s,teC,1<i, j<nk

D,oves = /\ (windowli, j] is valid)
i jonk
Paceepr =\ Xijucee

1<i, j<n*

coNP = {language L : L € NP},
i.e. languages for which it is easy
to verify non-membership. Machine
model for L € coNP is when x € L,
all leaves are accepting configurations;
otherwise, when x ¢ L, there exists one
leaf which is a rejecting configuration.

coNP-complete = {language B :
B € coNP,VA € coNP,A <p B}.

Theorem 19. NOSAT is
complete.

coNP-

Lemma 13. L € NP-complete iff L €
coNP-complete.

6 Probabilistic
chines

Turing Ma-

RP, or randomized polynomial time,
are the languages L for which there is
a probabilistic Turing machine that, on
input x, runs in poly(|x|) and when x €
L, Pr[reaching accept] > %; otherwise,
when x ¢ L, Pr[reaching reject] = 1.

Second definition for RP: it con-
tains languages L for which there exists
a deterministic polytime Turing ma-
chine V such that when x € L, for at
least half of all y with |y| < poly(|x|),V
accepts (x,y); when x ¢ L, for all y with
|yl < poly(|x]),V rejects (x,y).

Contrast with NP, where Vx €
L, Pr[reaching accept] > 0, Vx ¢ L,
Pr[reaching reject] = 1.

Theorem 20. RP C NP

coRP: Vx € L, Pr[reaching accept]
=1, Vx ¢ L, Pr[reaching reject] > %

coNP: Vx € L, Pr[reaching accept]
=1, Vx ¢ L, Pr[reaching reject] > 0.

BPP, or bounded error probabilistic
polynomial time: Vx € L, Pr[reaching
accept] > %, Vx ¢ L, Pr[reaching reject]
>3

Lemma 14. RP C BPP
Lemma 15. coRP C BPP

Lemma 16. RP(1) = RP(3) (proof via
amplification)

Lemma 17. RP is closed under compo-
sition.

7 Communication Complexity

Model:
e Finite sets X,Y,Z
e Function f: X XY = Z

e Two player, Alice and Bob
e Decide on a communication pro-
tocol beforehand
e Alicehasx € X,BobhasyeY
e Goal: collaboratively compute
f(x,y) by sending bits back and
forth (must end with both side
knowing f(x,y))
The trivial prototol:
e Alice sends x to Bob (log|X|)
e Bob computes and sends z =
f(x,y) to Alice (log|Z|)
Total: log|X| + log|Z| or log|Y| +
log|Z|
A communication protocol is a bi-
nary tree where each node is labelled
by either a, : X — {L,R} or b, : Y —
{L,R} and each leaf is labelled by an
element of Z. The depth of the proto-
col tree is the maximum number of bits
sent by the protocol.
The deterministic communication
complexity of a function f is

D(f) = min (max(number of bits))

tree for £\ (x,y)

= min (depth of tree)
tree for f

Lemma 18. D(EQ,) <n+1

A rectangle in X XY is a set of
the form R = A x B where A C X and
B C Y. R is a rectangle iff (x,y) €
RA(X,y)ER<E (x,y) ERA(X,y) ER

Lemma 19. Let T be a protocol tree,
R, be the set of inputs that causes the
protocol to arrive at node v. Then R, is
a rectangle.

A rectangle is called f-
monochromatic if f(x,y) is the same
for all (x,y) € R.

Let R; C X XY be a rectangle for
i=1,...,k. The set Z ={Ry,...,R}
is called an f-monochromatic parti-
tion (into rectangles) if each R; is f-
monochromatic, and each (x,y) € X x
Y is contained in exactly one R;.

(partition (f) — min{ |%|
Z is an f-monochromatic partition}

Lemma 20. For any protocol tree T,
the rectangles {R : v is aleafin T} are
an f-monochromatic partition.

Cpartitinn (f) <

Lemma 21.

min _ |number of leaves in T |
protocol tree T

Lemma 22. D(f) > [log, Crarition()]

A fooling set S C X XY is a set
where all points (x,y) € S have the
same value f(x,y) = z, and for any dis-
tinct points (x,y) and (x’,y’) in S, either

fx,y) #zor f(x,y) #z.

Lemma 23. Crartiion(fy > |S| + 1,
where S is a fooling set for f

Lemma 24. D(f) > [log,(|S|+1)],
where S is a fooling set for f

Lemma 25. D(EQ,) = D(GTE,) =
D(DIST,) =n+1

Model for non-deterministic com-
munication complexity:

e Function f: X XY — Z is known
to all

e Bob does not know x, Alice does
not know y

e Alice and Bob do not communi-
cate

e Piere tries to force Alice and Bob
to accept by sending certificate z.
How short can z be?

N(f)= min

nondet protocol

Or, N(f) = min{k} such that there
exist A and B, for all x € X, y €Y,
flx,y) =1 = 3z € {0,1}FA(x,2) =
IAB(y,z) =1, f(x,y) =0=Vz €
{0,1}%,A(x,z) =0V B(y,z) = 0.

(length of cert).

Lemma 26. N(—DISJ,) <logn
Lemma 27. Forall f, D(f) = D(—f).
Lemma 28. N(—EQ,) <log(n)+1

Lemma 29. Let S be a fooling set
where f(x,y) = 1 for all (x,y) € S.
Then N(f) = [logy(|S])1.

Lemma 30. N(EQ,) >n

The set Z = {Ry,...,Ry} is a cover
of the l-entries (by rectangles) if (1)
each R; is a rectangle containing only
Is, and (2) every (x,y) € X xY with
f(x,y) =1 is contained in at least one
R;.

clos(f) = min{|%]
Z is a cover of the 1-entries}

CO—cover (f) — Cl—cover(ﬁf) .

Lemma 31, cpariton(f) =
Cl -cover(f) + CO—cover (f)

Lemma 32. N(f) =
[log, (CT" (f))]

Lemma 33. D(f) > N(f)
Lemma 34. D(—f) = N(f)

Theorem 21. Let f: X xY — {0,1} be
arbitrary, Cy be a cover of the 0-entries,
and Cy be a cover of the 1-entries. Then
D(f) = O(logCy*logCy).

Lemma 35. D(f) = O(N(f)*N(—f))

	Prerequisite Definitions
	Regular Languages
	Context-Free Languages
	Recognizable Languages
	Reductions
	Probabilistic Turing Machines
	Communication Complexity

