
1 Prerequisite Definitions

Alphabets Σ, and Γ are finite nonempty
sets of symbols.

A string is a finite sequence of zero
or more symbols from an alphabet.

Σ? is the set of all strings over al-
phabet Σ.

ε is the empty string and cannot be
in Σ.

A problem is a mapping from
strings to strings.

A decision problem is a problem
whose output is yes/no (or often ac-
cept/reject).

A decision problem be thought of
as the set of all strings for which the
function outputs “accept”.

A language is a set of strings, so
any set S ⊆ Σ? is a language, even /0.
Thus, decision problems are equivalent
to languages.

2 Regular Languages

L(M) is the language accepted by ma-
chine M.

A deterministic finite automaton is
a 5-tuple M = (Q,Σ,δ ,q0,F), where
• Q is a finite set of states,
• Σ is an alphabet,
• δ : Q × Σ → Q is a transition

function describing its transitions
and labels,
• q0 ∈ Q is the starting state, and
• F ⊆Q is a set of accepting states.

If δ is not fully specified, we assume an
implicit transition to an error state.

A deterministic finite automaton M
accepts input string w = w1w2 . . .wn

(wi ∈ Σ) if there exists a sequence of
states r0,r1,r2, . . . ,rn (ri ∈ Q) such that
• r0 = q0,

• for all i ∈ {1, . . . ,n}, ri =
δ (ri−1,wi), and
• rn ∈ F .

r0,r1,r2, . . . ,rn are the sequence of
states visited during the machine’s
computation.

A non-deterministic finite automa-
ton is a 5-tuple M = (Q,Σ,δ ,q0,F),
where
• Q,Σ,q0,F are the same as a

deterministic finite automaton’s,
and
• δ : Q× (Σ∪{ε})→ 2Q.
A non-deterministic finite automa-

ton accepts the string w = w1w2 . . .wn

(wi ∈ Σ) if there exist a string y =
y1y2 . . .ym (yi ∈Σ∪{ε}) and a sequence
r = r0,r1, . . . ,rn (ri ∈ Q) such that
• w = y1 ◦ y2 ◦ · · · ◦ ym (i.e. y is w

with some ε inserted),
• r0 = q0,
• for all i = {1, . . . ,m}, ri ∈

δ (ri−1,qi), and
• rm ∈ F .
The ε-closure for any set S ⊆ Q is

denoted E(S), which is the set of all
states in Q that can be reachable by fol-
lowing any number of ε-transition.

Theorem 1. A non-deterministic fi-
nite automaton can be converted to an
equivalent deterministic finite automa-
ton.

A regular language is any lan-
guage accepted by some finite automa-
ton. The set of all regular languages is
called the class of regular languages.

Theorem 2. Regular languages are
closed under
• Concatenation L1 ◦ L2 = {x ◦ y :

x ∈ L1 and y ∈ L2}. Note: L1 6⊆
L1 ◦L2.

• Union L1 ∪ L2 = {x : x ∈
L1 or x ∈ L2}.
• Intersection L1 ∩ L2 = {x : x ∈

L1 and x ∈ L2}.
• Complement L=Σ?\L= {x : x /∈

L}.
• Star L? = {x1 ◦ x2 ◦ · · · ◦ xk : xi ∈

L and k ≥ 0}.

R is a regular expression if R is
• a ∈ Σ,
• ε ,
• /0,
• R1∪R2, or R1|R2,
• R1 ◦R2, or R1R2,
• R?

1,
• Shorthand: Σ = (a1|a2| . . . |ak),

ai ∈ Σ,
where Ri is a regular expression.

Identities of Regular Languages
• /0∪R = R∪ /0 = R
• /0◦R = R◦ /0 = /0
• ε ◦R = R◦ ε = R
• ε? = ε

• /0? = /0
• /0∪R◦R? = R◦R?∪ ε = R?

• (a|b)? = (a?|b?)? = (a?b?)? =
(a?|b)? = (a|b?)? = a?(ba?)? =
b?(ab?)?

Theorem 3. Languages accepted by
DFAs = languages accepted by NFAs =
regular languages

Theorem 4. If L is a finite language, L
is regular.

If a computation path of any finite
automaton is longer than the number of
states it has, there must be a cycle in
that computation path.

Lemma 1 (Pumping Lemma). Every
regular language satisfies the pumping
condition.

Pumping condition: There exists
an integer p such that for every string
w ∈ L, with |w| ≥ p, there exist strings
x,y,z ∈ Σ? with w = xyz,y 6= ε, |xy| ≤ p
such that for all i≥ 0, xyiz ∈ L.

Negation of pumping condition:
For all integers p, there exists a string
w ∈ L, with |w| ≥ p, for all x,y,z ∈ Σ?

with w = xyz,y 6= ε, |xy| ≤ p, there ex-
ists i≥ 0, i 6= 1 such that xyiz /∈ L.

Limitations of finite automata:
• Only read input once, left to

right.
• Only finite memory.

3 Context-Free Languages
A pushdown automaton is a 6-tuple
M = (Q,Σ,Γ,δ ,q0,F), where
• Q is a finite set of states,
• Σ is its input alphabet,
• Γ is its stack alphabet,
• δ : Q× (Σ∪{ε})× (Γ∪{ε})→

2Q×(Γ∪{ε}) is its transition func-
tion,
• q0 ∈ Q is its starting state, and
• F ⊆ Q is a finite set of accepting

states.
Labels: a,b→ c: if input symbol is

a, and top of stack is b, pop it and push
c. In other words, input symbol read,
stack symbol popped → stack symbol
pushed, e.g. 0,ε → $.

Suppose u,v,w are strings of vari-
ables and terminals, and there is a rule
A→ w. From the string uAv, we can
obtain uwv. We write uAv→ uwv, and
say uAv yields uwv.

If u1→ u2→ ··· → uk, then u1→?

uk, or u1 derives uk. There must be a
finite number of arrows between u1 and
uk.

Given a grammar G, the language
derived by the grammar is L(G) = {w∈

1

Σ? : S→? w and S is the start variable}
Context-free grammar: the lhs of

rules is a single variable, rhs is any
string of variables and terminals. A
context-free language is one that can
be derived from a context-free gram-
mar. An example context-free gram-
mar is G = (V,Σ,R,〈EXPR〉), where
V = {〈EXPR〉,〈TERM〉,〈FACTOR〉},
Σ = {a,+,×,(,)}, and
R = {〈EXPR〉 → 〈EXPR〉 +
〈TERM〉|〈TERM〉,〈TERM〉 → 〈TERM〉 ×
〈FACTOR〉|〈FACTOR〉,〈FACTOR〉 →
(〈EXPR〉)}.

A left-most derivation is a sequence
S → u1 → u2 → ··· → uk → w where
each step applies a rule to the left-most
variable. A grammar is ambiguous
when it has multiple left-most deriva-
tions for the same string.

Theorem 5. A language L is recog-
nized by a pushdown automaton iff L is
described by a context-free grammar.

Theorem 6. Context-free languages
are closed under union, concatenation,
star.

4 Recognizable Languages
Differences from previous models
• The input is written on tape.
• It can write to the tape.
• It can move left and right on tape.
• It halts immediately when it

reaches an accepting or rejecting
state. The rejecting state must
exist but may not be shown.

A deterministic Turing
machine is a 7-tuple M =
(Q,Σ,Γ,δ ,q0,qaccept ,qre ject), where
• Q is its finite non-empty set of

states,

• Σ is its input alphabet,
• Γ is its tape alphabet (Σ ⊂ Γ and
∈ Γ\Σ),

• δ : Q×Γ→Q×Γ×{L,R} is its
transition function,
• q0 ∈ Q is its starting state,
• qaccept ∈ Q is its accepting state,

and
• qre ject ∈ Q is its rejecting state

(qre ject 6= qaccept).
Labels: a→ b,R: if tape symbol is

a, write b and move head right. a→ R:
if tape symbol is a, move head right.
a,b,c→ R: if tape symbol is a,b, or c,
move head right.

On input x, a Turing machine can
(1) accept, (2) reject, or (3) run in an
infinite loop.

The language recognized by a
Turing machine M is L(M) = {x :
on input x,M halts in qaccept}. A lan-
guage is recognizable if there exists a
Turing machine which recognizes it.

Regular languages ⊆ context-free
languages ⊆ decidable languages ⊆
recognizable languages

A configuration is a way to de-
scribe the entire state of the Turing
machine. It is a string aqb where
a ∈ Γ?,q ∈ Q,b ∈ Γ?, which indicates
that q is the current state of the Tur-
ing machine, the tape content currently
is ab and its head is currently point-
ing at the first symbol of b. Any Tur-
ing machine halts if its configuration is
of the form aqacceptb, or aqre jectb for
any ab. Config(i) uniquely determines
Config(i+1).

Theorem 7. Every k-tape Turing ma-
chine has an equivalent single tape Tur-
ing machine.

If the alphabet of the multitape Tur-

ing machine is Γ, we can make the
single tape Turing machine’s alphabet
(Γ∪{#})×{normal,bold}.

A non-deterministic Tur-
ing machine is a 7-tuple M =
(Q,Σ,Γ,δ ,q0,qaccept ,qre ject), where
the only difference from a determin-
istic Turing machine is the transition
function delta : Q×Γ→ 2Q×Γ×{L,R}.

A non-deterministic Turing ma-
chine accepts its input iff some node
in the configuration tree has qaccept . It
does not accept its input iff the configu-
ration tree grows forever (infinite loop)
or no node in the tree has qaccept .

Acceptance of a non-deterministic
Turing machine: input w is accepted if
there exist configurations c0,c1, . . . ,ck
where
• c0 = qstartw, and
• ci⇒ ci+1 (ci+1 is a possible con-

figuration from ci, following the
transition function δ).

The outcomes could be
• w is accepted, i.e. there exists a

node in the tree which is an ac-
cepting configuration,
• w is explicitly rejected, i.e. the

tree is finite but no node is an ac-
cepting configuration (all leaves
are rejecting configurations), or
• the non-deterministic Turing ma-

chine runs forever on w, i.e. the
tree is infinite but no node is
an accepting configuration (there
might be finite branches termi-
nating in a rejecting configura-
tion in the tree).

A Turing machien is a decider if it
halts on all inputs, i.e. it either rejects
or accepts all inputs.

Theorem 8. Every non-deterministic

Turing machine has an equivalent de-
terministic Turing machine. If that non-
deterministic Turing machine is a de-
cider, there is an equivalent determin-
istic Turing machine decider.

Theorem 9. Recognizable languages
are closed under union, intersection,
concatenation, star.

Implementation level description of
a multitape Turing machine for L =
{x#x : x ∈ {0,1}?}:
• Scan the first head to the right un-

til it reads a #. Move right. The
second head is still at the start of
the second tape.
• Repeatedly read symbol from the

first tape (reject if the symbol is
not 0 or 1), write it to the second
tape, and move both heads right,
until seeing a blank on the first
tape.
• Move the first head left until a #

is under it. Replace the symbol
with a blank ().
• Move both heads left until they

reach the start of their respective
tapes (using the $ sign hack to
mark the start of the tape).
• Repeat until seeing a blank on

both tapes.
– If the symbols on the two

tapes differ, reject.
– Otherwise, move both head

right.
〈O〉 is a string encoding for the ob-

ject O.
Cardinality of Sets: two sets A and

B have the same cardinality if there ex-
ists a bijection f : A→ B.

N = {1,2,3, . . .} is the set of all
natural numbers. A set is finite if it has

2

a bijection to {1..n} for some natural
number n. A set is countably infinite
if it has the same cardinality as N. A
set is countable or at most countable if
it is finite or countably infinite.

Lemma 2. Any language L is count-
able.

Lemma 3. The set of all Turing ma-
chines is countable.

Lemma 4. The set B of all infinite bit-
sequences is not countable.

Lemma 5. 2Σ?
is uncountable.

5 Reductions
AT M = {〈M,w〉 : M accepts w}
and HALTT M = {〈M,w〉 :
M halts on input w} are recognizable
but not decidable.

Theorem 10. If L and L are recogniz-
able, then L is decidable (and so is L).

Lemma 6. AT M is unrecognizable.

Proof template for undecidability
via Turing reduction: Reduce a prob-
lem known to be undecidable to that
language L, usually AT M, i.e. AT M ≤T

L. Assume a Turing machine decider
R for L. Construct S that decides AT M

using R.
Runtime of a determinis-

tic Turing machine is a func-
tion f : N → N given by f (n) =
maxx∈Σ?,|x|=n(no. of steps of M on input x).

T IME(t(n)) = {language L :
∃deterministic Turing machine that
decides L in time O(t(n))}.

P =
⋃

c≥0 T IME(nc)

EXP =
⋃

k≥0 T IME(2nk
)

Theorem 11 (Time hierarchy theo-
rem). If f : N→ N is reasonable and
f = Ω(n logn) then T IME(f (n)) ⊂
T IME(f (n)2).

Lemma 7. P⊂ EXP

Runtime of a non-deterministic Tur-
ing machine is the height of the config-
uration tree.

NT IME(t(n)) = {language L :
∃ non-deterministic Turing machine that
decides L in time t(n)}

NP =
⋃

c>0 NT IME(nc), i.e. lan-
guages for which it is easy to verify
membership.

Lemma 8. P⊆ NP

Lemma 9. NP⊆ EXP

Verifier-based definition for L ∈
NP: there exists a deterministic poly-
time Turing machine V and a constant
c such that L = {x ∈ Σ? : ∃y ∈ Σ?, |y| ≤
|x|c,V accepts (x,y)}.

A function is polytime computable
if f : Σ? → Σ? if there exists a Turing
machine M that has x as input, runs for
time poly(|x|) and halts with f (x) writ-
ten on the tape.

f is a polytime reduction from lan-
guage A to language B, denoted A≤P B
if (1) f (A) ⊆ B, (2) f (A) ⊆ B, and (3)
f is a polytime computable function.

Theorem 12. If A≤P B and B ∈ P then
A ∈ P.

A language L is NP-hard if A≤P L
for all A ∈ NP. A language L is NP-
complete if L is NP-hard and L ∈ NP.

Theorem 13. If P 6= NP, then there
exists language L such that L /∈ NP-
complete, L /∈ P, and L ∈ NP.

Theorem 14. If (1) B is NP-complete,
(2) C ∈ NP, and (3) B ≤P C, then C is
NP-complete.

CLIQUE is a language whose
strings are of the form 〈G,k〉, where
G = (V,E) is a graph and k ∈ N, for
which there exists U ⊆ V with |U | ≥ k
such that {u,v} ∈ E for all distinct ver-
tices u,v ∈U .

Theorem 15. CLIQUE is NP-
complete

Theorem 16. 3SAT ≤P CLIQUE

Theorem 17. 3SAT ≤P MAXCLIQUE

Reductions from 3SAT often in-
volves gadgets:
• Clause gadgets: for the as-

signemnt to pick a true literal in
each clause (a clique must pick a
vertex from each group)
• Variable gadget: force as-

signemnt to set each variable
either to true or false but not both
(a clique cannot pick both xi and
xi).

INDSET is a language whose
strings are of the form 〈H,k〉, where
H = (V,E) is a graph and k ∈ N, for
which there exists U ⊆ V with |U | = k
such that ∀u,v ∈U,{u,v} /∈ E.

V ERT EX −COV ER is a language
whose strings are of the form 〈H, t〉,
where H = (V,E) is a graph and t ∈ N,
for which there exists a set C ⊆ V with
|C| ≤ t such that ∀{u,v} ∈ E, either u,
v or both is in C.

Let G = (V,E) be a graph. Then
G = (V,E) where E = {{u,v} : {u,v} /∈
E}.

Lemma 10. U is a clique in G iff U =
V \U is a vertex cover in G. This im-
plies G has a clique of size≥ k iff G has
a vertex cover of size ≤ n− k, where
|V |= n.

Lemma 11. CLIQUE ≤P V ERT EX −
COV ER

Lemma 12. CLIQUE ≤P INDSET

Theorem 18. SAT is NP-complete via
a where

C = Q∪{#}∪Γ

xi, j,s = true⇔ cell[i, j] = s

Φstart = x1,1,#∧ x1,2,qstart ∧ x1,3,w1 ∧ . . .
∧x1,nk−1, ∧ x1,nk,#

Φcell =
nk∧

i, j=1

(∨
s∈C

xi, j,s∧

∧
s,t∈C,1≤i, j≤nk

¬(xi, j,s∧ xi, j,t)


Φmoves =

∧
i, j≥nk

(window[i, j] is valid)

Φaccept =
∨

1≤i, j≤nk

xi, j,qaccept

coNP = {language L : L ∈ NP},
i.e. languages for which it is easy
to verify non-membership. Machine
model for L ∈ coNP is when x ∈ L,
all leaves are accepting configurations;
otherwise, when x /∈ L, there exists one
leaf which is a rejecting configuration.

coNP-complete = {language B :
B ∈ coNP,∀A ∈ coNP,A≤P B}.

Theorem 19. NOSAT is coNP-
complete.

Lemma 13. L ∈ NP-complete iff L ∈
coNP-complete.

3

6 Probabilistic Turing Ma-
chines

RP, or randomized polynomial time,
are the languages L for which there is
a probabilistic Turing machine that, on
input x, runs in poly(|x|) and when x ∈
L, Pr[reaching accept] ≥ 1

2 ; otherwise,
when x /∈ L, Pr[reaching reject] = 1.

Second definition for RP: it con-
tains languages L for which there exists
a deterministic polytime Turing ma-
chine V such that when x ∈ L, for at
least half of all y with |y| ≤ poly(|x|),V
accepts (x,y); when x /∈ L, for all y with
|y| ≤ poly(|x|),V rejects (x,y).

Contrast with NP, where ∀x ∈
L, Pr[reaching accept] > 0, ∀x /∈ L,
Pr[reaching reject] = 1.

Theorem 20. RP⊆ NP

coRP: ∀x ∈ L, Pr[reaching accept]
= 1, ∀x /∈ L, Pr[reaching reject] ≥ 1

2 .
coNP: ∀x ∈ L, Pr[reaching accept]

= 1, ∀x /∈ L, Pr[reaching reject] > 0.
BPP, or bounded error probabilistic

polynomial time: ∀x ∈ L, Pr[reaching
accept]≥ 2

3 , ∀x /∈ L, Pr[reaching reject]
≥ 2

3 .

Lemma 14. RP⊆ BPP

Lemma 15. coRP⊆ BPP

Lemma 16. RP(1
2) = RP(3

4) (proof via
amplification)

Lemma 17. RP is closed under compo-
sition.

7 Communication Complexity
Model:
• Finite sets X ,Y,Z
• Function f : X×Y → Z

• Two player, Alice and Bob
• Decide on a communication pro-

tocol beforehand
• Alice has x ∈ X , Bob has y ∈ Y
• Goal: collaboratively compute

f (x,y) by sending bits back and
forth (must end with both side
knowing f (x,y))

The trivial prototol:
• Alice sends x to Bob (log |X |)
• Bob computes and sends z =

f (x,y) to Alice (log |Z|)
Total: log |X | + log |Z| or log |Y | +
log |Z|

A communication protocol is a bi-
nary tree where each node is labelled
by either av : X → {L,R} or bv : Y →
{L,R} and each leaf is labelled by an
element of Z. The depth of the proto-
col tree is the maximum number of bits
sent by the protocol.

The deterministic communication
complexity of a function f is

D(f) = min
tree for f

(
max
(x,y)

(number of bits)
)

= min
tree for f

(depth of tree)

Lemma 18. D(EQn)≤ n+1

A rectangle in X × Y is a set of
the form R = A×B where A ⊆ X and
B ⊆ Y . R is a rectangle iff (x,y) ∈
R∧(x′,y′)∈R⇔ (x,y′)∈R∧(x′,y)∈R

Lemma 19. Let T be a protocol tree,
Rv be the set of inputs that causes the
protocol to arrive at node v. Then Rv is
a rectangle.

A rectangle is called f -
monochromatic if f (x,y) is the same
for all (x,y) ∈ R.

Let Ri ⊂ X ×Y be a rectangle for
i = 1, . . . ,k. The set R = {R1, . . . ,Rk}
is called an f -monochromatic parti-
tion (into rectangles) if each Ri is f -
monochromatic, and each (x,y) ∈ X ×
Y is contained in exactly one Ri.

Cpartition(f) = min{|R| :
R is an f -monochromatic partition}

Lemma 20. For any protocol tree T ,
the rectangles {R : v is a leaf in T} are
an f -monochromatic partition.

Lemma 21. Cpartition(f) ≤
min

protocol tree T
|number of leaves in T |

Lemma 22. D(f)≥
⌈
log2Cpartition(f)

⌉
A fooling set S ⊆ X ×Y is a set

where all points (x,y) ∈ S have the
same value f (x,y) = z, and for any dis-
tinct points (x,y) and (x′,y′) in S, either
f (x,y′) 6= z or f (x′,y) 6= z.

Lemma 23. Cpartition(f) ≥ |S| + 1,
where S is a fooling set for f

Lemma 24. D(f) ≥ dlog2(|S|+1)e,
where S is a fooling set for f

Lemma 25. D(EQn) = D(GT En) =
D(DISJn) = n+1

Model for non-deterministic com-
munication complexity:
• Function f : X×Y → Z is known

to all
• Bob does not know x, Alice does

not know y
• Alice and Bob do not communi-

cate
• Piere tries to force Alice and Bob

to accept by sending certificate z.
How short can z be?

N(f)= min
nondet protocol

(length of cert).

Or, N(f) = min{k} such that there
exist A and B, for all x ∈ X , y ∈ Y ,
f (x,y) = 1 ⇒ ∃z ∈ {0,1}k,A(x,z) =
1 ∧ B(y,z) = 1, f (x,y) = 0 ⇒ ∀z ∈
{0,1}k,A(x,z) = 0∨B(y,z) = 0.

Lemma 26. N(¬DISJn)≤ logn

Lemma 27. For all f , D(f) = D(¬ f).

Lemma 28. N(¬EQn)≤ log(n)+1

Lemma 29. Let S be a fooling set
where f (x,y) = 1 for all (x,y) ∈ S.
Then N(f)≥ dlog2(|S|)e.

Lemma 30. N(EQn)≥ n

The set R = {R1, . . . ,Rk} is a cover
of the 1-entries (by rectangles) if (1)
each Ri is a rectangle containing only
1s, and (2) every (x,y) ∈ X ×Y with
f (x,y) = 1 is contained in at least one
Ri.

C1-cover(f) = min{|R| :
R is a cover of the 1-entries}

C0-cover(f) =C1-cover(¬ f).

Lemma 31. Cpartition(f) =
C1-cover(f)+C0-cover(f).

Lemma 32. N(f) =⌈
log2(C

1-cover(f))
⌉

Lemma 33. D(f)≥ N(f)

Lemma 34. D(¬ f) = N(f)

Theorem 21. Let f : X×Y →{0,1} be
arbitrary, C0 be a cover of the 0-entries,
and C1 be a cover of the 1-entries. Then
D(f) = O(logC0 ∗ logC1).

Lemma 35. D(f) = O(N(f)∗N(¬ f))

4

	Prerequisite Definitions
	Regular Languages
	Context-Free Languages
	Recognizable Languages
	Reductions
	Probabilistic Turing Machines
	Communication Complexity

