1 Prerequisite Definitions

Alphabets Σ, and Γ are finite nonempty sets of symbols.

A string is a finite sequence of zero or more symbols from an alphabet.
Σ^{\star} is the set of all strings over alphabet Σ.
ε is the empty string and cannot be in Σ.

A problem is a mapping from strings to strings.

A decision problem is a problem whose output is yes/no (or often accept/reject).

A decision problem be thought of as the set of all strings for which the function outputs "accept".

A language is a set of strings, so any set $S \subseteq \Sigma^{\star}$ is a language, even \emptyset. Thus, decision problems are equivalent to languages.

2 Regular Languages

$L(M)$ is the language accepted by machine M.

A deterministic finite automaton is a 5 -tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where

- Q is a finite set of states,
- Σ is an alphabet,
- $\delta: Q \times \Sigma \rightarrow Q$ is a transition function describing its transitions and labels,
- $q_{0} \in Q$ is the starting state, and
- $F \subseteq Q$ is a set of accepting states. If δ is not fully specified, we assume an implicit transition to an error state.

A deterministic finite automaton M accepts input string $w=w_{1} w_{2} \ldots w_{n}$ ($w_{i} \in \Sigma$) if there exists a sequence of states $r_{0}, r_{1}, r_{2}, \ldots, r_{n}\left(r_{i} \in Q\right)$ such that

- $r_{0}=q_{0}$,
- for all $i \in\{1, \ldots, n\}, \quad r_{i}=$ $\delta\left(r_{i-1}, w_{i}\right)$, and
- $r_{n} \in F$.
$r_{0}, r_{1}, r_{2}, \ldots, r_{n}$ are the sequence of states visited during the machine's computation.

A non-deterministic finite automaton is a 5 -tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$, where

- Q, Σ, q_{0}, F are the same as a deterministic finite automaton's, and
- $\delta: Q \times(\Sigma \cup\{\varepsilon\}) \rightarrow 2^{Q}$.

A non-deterministic finite automaton accepts the string $w=w_{1} w_{2} \ldots w_{n}$ $\left(w_{i} \in \Sigma\right)$ if there exist a string $y=$ $y_{1} y_{2} \ldots y_{m}\left(y_{i} \in \Sigma \cup\{\varepsilon\}\right)$ and a sequence $r=r_{0}, r_{1}, \ldots, r_{n}\left(r_{i} \in Q\right)$ such that

- $w=y_{1} \circ y_{2} \circ \cdots \circ y_{m}$ (i.e. y is w with some ε inserted),
- $r_{0}=q_{0}$,
- for all $i=\{1, \ldots, m\}, \quad r_{i} \in$ $\delta\left(r_{i-1}, q_{i}\right)$, and
- $r_{m} \in F$.

The ε-closure for any set $S \subseteq Q$ is denoted $E(S)$, which is the set of all states in Q that can be reachable by following any number of ε-transition.
Theorem 1. A non-deterministic finite automaton can be converted to an equivalent deterministic finite automaton.

A regular language is any language accepted by some finite automaton. The set of all regular languages is called the class of regular languages.

Theorem 2. Regular languages are closed under

- Concatenation $L_{1} \circ L_{2}=\{x \circ y$: $x \in L_{1}$ and $\left.y \in L_{2}\right\}$. Note: $L_{1} \nsubseteq$ $L_{1} \circ L_{2}$.
- Union $L_{1} \cup L_{2}=\{x: x \in$ L_{1} or $\left.x \in L_{2}\right\}$.
- Intersection $L_{1} \cap L_{2}=\{x: x \in$ L_{1} and $\left.x \in L_{2}\right\}$.
- Complement $\bar{L}=\Sigma^{\star} \backslash L=\{x: x \notin$ $L\}$.
- Star $L^{\star}=\left\{x_{1} \circ x_{2} \circ \cdots \circ x_{k}: x_{i} \in\right.$ L and $k \geq 0\}$.
R is a regular expression if R is
- $a \in \Sigma$,
- ε,
- \emptyset,
- $R_{1} \cup R_{2}$, or $R_{1} \mid R_{2}$,
- $R_{1} \circ R_{2}$, or $R_{1} R_{2}$,
- R_{1}^{\star},
- Shorthand: $\Sigma=\left(a_{1}\left|a_{2}\right| \ldots \mid a_{k}\right)$, $a_{i} \in \Sigma$,
where R_{i} is a regular expression.
Identities of Regular Languages
- $\emptyset \cup R=R \cup \emptyset=R$
- $\emptyset \circ R=R \circ \emptyset=\emptyset$
- $\varepsilon \circ R=R \circ \varepsilon=R$
- $\varepsilon^{\star}=\varepsilon$
- $\emptyset^{\star}=\emptyset$
- $\emptyset \cup R \circ R^{\star}=R \circ R^{\star} \cup \varepsilon=R^{\star}$
- $(a \mid b)^{\star}=\left(a^{\star} \mid b^{\star}\right)^{\star}=\left(a^{\star} b^{\star}\right)^{\star}=$ $\left(a^{\star} \mid b\right)^{\star}=\left(a \mid b^{\star}\right)^{\star}=a^{\star}\left(b a^{\star}\right)^{\star}=$ $b^{\star}\left(a b^{\star}\right)^{\star}$
Theorem 3. Languages accepted by DFAs $=$ languages accepted by NFAs $=$ regular languages

Theorem 4. If L is a finite language, L is regular.

If a computation path of any finite automaton is longer than the number of states it has, there must be a cycle in that computation path.

Lemma 1 (Pumping Lemma). Every regular language satisfies the pumping condition.

Pumping condition: There exists an integer p such that for every string $w \in L$, with $|w| \geq p$, there exist strings $x, y, z \in \Sigma^{\star}$ with $w=x y z, y \neq \varepsilon,|x y| \leq p$ such that for all $i \geq 0, x y^{i} z \in L$.

Negation of pumping condition: For all integers p, there exists a string $w \in L$, with $|w| \geq p$, for all $x, y, z \in \Sigma^{\star}$ with $w=x y z, y \neq \varepsilon,|x y| \leq p$, there exists $i \geq 0, i \neq 1$ such that $x y^{i} z \notin L$.

Limitations of finite automata:

- Only read input once, left to right.
- Only finite memory.

3 Context-Free Languages

A pushdown automaton is a 6 -tuple $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right)$, where

- Q is a finite set of states,
- Σ is its input alphabet,
- Γ is its stack alphabet,
- $\delta: Q \times(\Sigma \cup\{\varepsilon\}) \times(\Gamma \cup\{\varepsilon\}) \rightarrow$ $2^{Q \times(\Gamma \cup\{\varepsilon\})}$ is its transition function,
- $q_{0} \in Q$ is its starting state, and
- $F \subseteq Q$ is a finite set of accepting states.
Labels: $a, b \rightarrow c$: if input symbol is a, and top of stack is b, pop it and push c. In other words, input symbol read, stack symbol popped \rightarrow stack symbol pushed, e.g. $0, \varepsilon \rightarrow \$$.

Suppose u, v, w are strings of variables and terminals, and there is a rule $A \rightarrow w$. From the string $u A v$, we can obtain $u w v$. We write $u A v \rightarrow u w v$, and say $u A v$ yields $u w v$.

If $u_{1} \rightarrow u_{2} \rightarrow \cdots \rightarrow u_{k}$, then $u_{1} \rightarrow^{\star}$ u_{k}, or u_{1} derives u_{k}. There must be a finite number of arrows between u_{1} and u_{k}.

Given a grammar G, the language derived by the grammar is $L(G)=\{w \in$
$\Sigma^{\star}: S \rightarrow^{\star} w$ and S is the start variable $\}$
Context-free grammar: the lhs of rules is a single variable, rhs is any string of variables and terminals. A context-free language is one that can be derived from a context-free grammar. An example context-free grammar is $G=(V, \Sigma, R,\langle\mathrm{EXPR}\rangle)$, where $V=\{\langle$ EXPR \rangle,\langle TERM \rangle,\langle FACTOR $\rangle\}$, $\Sigma=\{a,+, \times,()\},$,$\quad and$ $R=\{\langle\mathrm{EXPR}\rangle \rightarrow\langle\mathrm{EXPR}\rangle+$ \langle TERM $\rangle \mid\langle$ TERM \rangle,\langle TERM $\rangle \rightarrow\langle$ TERM $\rangle \times$ \langle FACTOR $) \mid$ (FACTOR \rangle,\langle FACTOR $\rangle \rightarrow$ ($\langle\mathrm{EXPR}\rangle)\}$.

A left-most derivation is a sequence $S \rightarrow u_{1} \rightarrow u_{2} \rightarrow \cdots \rightarrow u_{k} \rightarrow w$ where each step applies a rule to the left-most variable. A grammar is ambiguous when it has multiple left-most derivations for the same string.

Theorem 5. A language L is recognized by a pushdown automaton iff L is described by a context-free grammar.

Theorem 6. Context-free languages are closed under union, concatenation, star.

4 Recognizable Languages

Differences from previous models

- The input is written on tape.
- It can write to the tape.
- It can move left and right on tape.
- It halts immediately when it reaches an accepting or rejecting state. The rejecting state must exist but may not be shown.
A deterministic Turing machine is a 7-tuple $M=$ $\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$, where
- Q is its finite non-empty set of states,
- Σ is its input alphabet,
- Γ is its tape alphabet $(\Sigma \subset \Gamma$ and $-\in \Gamma \backslash \Sigma)$,
- $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$ is its transition function,
- $q_{0} \in Q$ is its starting state,
- $q_{\text {accept }} \in Q$ is its accepting state, and
- $q_{\text {reject }} \in Q$ is its rejecting state $\left(q_{\text {reject }} \neq q_{\text {accept }}\right)$.
Labels: $a \rightarrow b, R$: if tape symbol is a, write b and move head right. $a \rightarrow R$: if tape symbol is a, move head right. $a, b, c \rightarrow R$: if tape symbol is a, b, or c, move head right.

On input x, a Turing machine can (1) accept, (2) reject, or (3) run in an infinite loop.

The language recognized by a Turing machine M is $L(M)=\{x$: on input x, M halts in $\left.q_{\text {accept }}\right\}$. A language is recognizable if there exists a Turing machine which recognizes it.

Regular languages \subseteq context-free languages \subseteq decidable languages \subseteq recognizable languages

A configuration is a way to describe the entire state of the Turing machine. It is a string $a q b$ where $a \in \Gamma^{\star}, q \in Q, b \in \Gamma^{\star}$, which indicates that q is the current state of the Turing machine, the tape content currently is $a b$ and its head is currently pointing at the first symbol of b. Any Turing machine halts if its configuration is of the form $a q_{\text {accept }} b$, or $a q_{\text {reject }} b$ for any $a b$. Config(i) uniquely determines Config $(i+1)$.
Theorem 7. Every k-tape Turing machine has an equivalent single tape Turing machine.

If the alphabet of the multitape Tur-
ing machine is Γ, we can make the single tape Turing machine's alphabet $(\Gamma \cup\{\#\}) \times\{$ normal, bold $\}$.

A non-deterministic Turing machine is a 7-tuple $M=$ $\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$, where the only difference from a deterministic Turing machine is the transition function delta: $Q \times \Gamma \rightarrow 2^{Q \times \Gamma \times\{L, R\}}$.

A non-deterministic Turing machine accepts its input iff some node in the configuration tree has $q_{\text {accept }}$. It does not accept its input iff the configuration tree grows forever (infinite loop) or no node in the tree has $q_{\text {accept }}$.

Acceptance of a non-deterministic Turing machine: input w is accepted if there exist configurations $c_{0}, c_{1}, \ldots, c_{k}$ where

- $c_{0}=q_{\text {start }} w$, and
- $c_{i} \Rightarrow c_{i+1}\left(c_{i+1}\right.$ is a possible configuration from c_{i}, following the transition function δ).
The outcomes could be
- w is accepted, i.e. there exists a node in the tree which is an accepting configuration,
- w is explicitly rejected, i.e. the tree is finite but no node is an accepting configuration (all leaves are rejecting configurations), or
- the non-deterministic Turing machine runs forever on w, i.e. the tree is infinite but no node is an accepting configuration (there might be finite branches terminating in a rejecting configuration in the tree).
A Turing machien is a decider if it halts on all inputs, i.e. it either rejects or accepts all inputs.

Theorem 8. Every non-deterministic

Turing machine has an equivalent deterministic Turing machine. If that nondeterministic Turing machine is a decider, there is an equivalent deterministic Turing machine decider.

Theorem 9. Recognizable languages are closed under union, intersection, concatenation, star.

Implementation level description of a multitape Turing machine for $L=$ $\left\{x \# x: x \in\{0,1\}^{\star}\right\}:$

- Scan the first head to the right until it reads a \#. Move right. The second head is still at the start of the second tape.
- Repeatedly read symbol from the first tape (reject if the symbol is not 0 or 1), write it to the second tape, and move both heads right, until seeing a blank on the first tape.
- Move the first head left until a \# is under it. Replace the symbol with a blank (-).
- Move both heads left until they reach the start of their respective tapes (using the $\$$ sign hack to mark the start of the tape).
- Repeat until seeing a blank on both tapes.
- If the symbols on the two tapes differ, reject.
- Otherwise, move both head right.
$\langle O\rangle$ is a string encoding for the object O.

Cardinality of Sets: two sets A and B have the same cardinality if there exists a bijection $f: A \rightarrow B$.
$\mathbb{N}=\{1,2,3, \ldots\}$ is the set of all natural numbers. A set is finite if it has
a bijection to $\{1 . . \mathrm{n}\}$ for some natural number n. A set is countably infinite if it has the same cardinality as \mathbb{N}. A set is countable or at most countable if it is finite or countably infinite.

Lemma 2. Any language L is countable.

Lemma 3. The set of all Turing machines is countable.

Lemma 4. The set \mathscr{B} of all infinite bitsequences is not countable.

Lemma 5. $2^{\Sigma^{\star}}$ is uncountable.

5 Reductions

$A_{T M}=\{\langle M, w\rangle: M$ accepts $w\}$ and $H A L T_{T M}=\{\langle M, w\rangle$: M halts on input $w\}$ are recognizable but not decidable.

Theorem 10. If L and \bar{L} are recognizable, then L is decidable (and so is \bar{L}).

Lemma 6. $\overline{A_{T M}}$ is unrecognizable.
Proof template for undecidability via Turing reduction: Reduce a problem known to be undecidable to that language L, usually $A_{T M}$, i.e. $A_{T M} \leq_{T}$ L. Assume a Turing machine decider R for L. Construct S that decides $A_{T M}$ using R.

Runtime of a deterministic Turing machine is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ given by $f(n)=$ $\max _{x \in \Sigma^{*},|x|=n}($ no. of steps of M on input x).
$\operatorname{TIME}(t(n)) \quad=\quad$ language L \exists deterministic Turing machine that decides L in time $O(t(n))\}$.
$P=\bigcup_{c \geq 0} \operatorname{TIME}\left(n^{c}\right)$
$E X P=\bigcup_{k \geq 0} \operatorname{TIME}\left(2^{2^{k}}\right)$

Theorem $\mathbf{1 1}$ (Time hierarchy theorem). If $f: \mathbb{N} \rightarrow \mathbb{N}$ is reasonable and $f=\Omega(n \log n)$ then $\operatorname{TIME}(f(n)) \subset$ $\operatorname{TIME}\left(f(n)^{2}\right)$.

Lemma 7. $P \subset E X P$

Runtime of a non-deterministic Turing machine is the height of the configuration tree.
$\operatorname{NTIME}(t(n))=$ \{language $L:$ \exists non-deterministic Turing machine that decides L in time $t(n)\}$
$N P=\bigcup_{c>0} \operatorname{NTIME}\left(n^{c}\right)$, i.e. languages for which it is easy to verify membership.

Lemma 8. $P \subseteq N P$
Lemma 9. $N P \subseteq E X P$
Verifier-based definition for $L \in$ $N P$: there exists a deterministic polytime Turing machine V and a constant c such that $L=\left\{x \in \Sigma^{\star}: \exists y \in \Sigma^{\star},|y| \leq\right.$ $|x|^{c}, V$ accepts $\left.(x, y)\right\}$.

A function is polytime computable if $f: \Sigma^{\star} \rightarrow \Sigma^{\star}$ if there exists a Turing machine M that has x as input, runs for time poly $(|x|)$ and halts with $f(x)$ written on the tape.
f is a polytime reduction from language A to language B, denoted $A \leq_{P} B$ if (1) $f(A) \subseteq B$, (2) $f(\bar{A}) \subseteq \bar{B}$, and (3) f is a polytime computable function.

Theorem 12. If $A \leq_{P} B$ and $B \in P$ then $A \in P$.

A language L is $N P$-hard if $A \leq_{P} L$ for all $A \in N P$. A language L is $N P$ complete if L is $N P$-hard and $L \in N P$.

Theorem 13. If $P \neq N P$, then there exists language L such that $L \notin N P$ complete, $L \notin P$, and $L \in N P$.

Theorem 14. If (1) B is NP-complete, (2) $C \in N P$, and (3) $B \leq_{P} C$, then C is NP-complete.

CLIQUE is a language whose strings are of the form $\langle G, k\rangle$, where $G=(V, E)$ is a graph and $k \in \mathbb{N}$, for which there exists $U \subseteq V$ with $|U| \geq k$ such that $\{u, v\} \in E$ for all distinct vertices $u, v \in U$.

Theorem 15. CLIQUE is NPcomplete

Theorem 16. $3 S A T \leq_{P} C L I Q U E$
Theorem 17. $3 S A T \leq_{P} M A X C L I Q U E$
Reductions from 3SAT often involves gadgets:

- Clause gadgets: for the assignemnt to pick a true literal in each clause (a clique must pick a vertex from each group)
- Variable gadget: force assignemnt to set each variable either to true or false but not both (a clique cannot pick both x_{i} and $\overline{x_{i}}$).
INDSET is a language whose strings are of the form $\langle H, k\rangle$, where $H=(V, E)$ is a graph and $k \in \mathbb{N}$, for which there exists $U \subseteq V$ with $|U|=k$ such that $\forall u, v \in U,\{u, v\} \notin E$.
$V E R T E X-C O V E R$ is a language whose strings are of the form $\langle H, t\rangle$, where $H=(V, E)$ is a graph and $t \in \mathbb{N}$, for which there exists a set $C \subseteq V$ with $|C| \leq t$ such that $\forall\{u, v\} \in E$, either u, v or both is in C.

Let $G=(V, E)$ be a graph. Then $\bar{G}=(V, \bar{E})$ where $\bar{E}=\{\{u, v\}:\{u, v\} \notin$ $E\}$.

Lemma 10. U is a clique in G iff $\bar{U}=$ $V \backslash U$ is a vertex cover in \bar{G}. This implies G has a clique of size $\geq k$ iff \bar{G} has a vertex cover of size $\leq n-k$, where $|V|=n$.

Lemma 11. CLIQUE $\leq_{P} V E R T E X-$ COVER

Lemma 12. CLIQUE \leq_{P} INDSET
Theorem 18. SAT is NP-complete via a where

$$
\begin{gathered}
C=Q \cup\{\#\} \cup \Gamma \\
x_{i, j, s}=\text { true } \Leftrightarrow \text { cell }[i, j]=s \\
\Phi_{\text {start }}=x_{1,1, \#} \wedge x_{1,2, q_{\text {start }} \wedge x_{1,3, w_{1}} \wedge \ldots}^{\wedge x_{1, n^{k}-1,\llcorner } \wedge x_{1, n^{k}, \#}} \\
\Phi_{\text {cell }}=\bigwedge_{i, j=1}^{n^{k}}\left(\bigvee_{s \in C} x_{i, j, s} \wedge\right. \\
\bigwedge_{\text {s,t }}, 1 \leq i, j \leq n^{k} \\
\left.\Phi_{\text {moves }}=\bigwedge_{i, j \geq n^{k}}\left(x_{i, j, s} \wedge x_{i, j, t}\right)\right) \\
\Phi_{\text {accept }}=\bigvee_{1 \leq i, j \leq n^{k}} x_{i, j, q_{\text {accept }}}
\end{gathered}
$$

$c o N P=\{$ language $L: \bar{L} \in N P\}$, i.e. languages for which it is easy to verify non-membership. Machine model for $L \in \operatorname{coNP}$ is when $x \in L$, all leaves are accepting configurations; otherwise, when $x \notin L$, there exists one leaf which is a rejecting configuration.
coNP-complete $=\{$ language B : $\left.B \in \operatorname{coN} P, \forall A \in \operatorname{coN} P, A \leq_{P} B\right\}$.
Theorem 19. NOSAT is coNPcomplete.

Lemma 13. $L \in N P$-complete iff $\bar{L} \in$ coNP-complete.

6 Probabilistic Turing Machines

$R P$, or randomized polynomial time, are the languages L for which there is a probabilistic Turing machine that, on input x, runs in $\operatorname{poly}(|x|)$ and when $x \in$ $L, \operatorname{Pr}[$ reaching accept $] \geq \frac{1}{2}$; otherwise, when $x \notin L, \operatorname{Pr}[$ reaching reject $]=1$.

Second definition for $R P$: it contains languages L for which there exists a deterministic polytime Turing machine V such that when $x \in L$, for at least half of all y with $|y| \leq \operatorname{poly}(|x|), V$ accepts (x, y); when $x \notin L$, for all y with $|y| \leq \operatorname{poly}(|x|), V$ rejects (x, y).

Contrast with $N P$, where $\forall x \in$ $L, \operatorname{Pr}[$ reaching accept $]>0, \forall x \notin L$, $\operatorname{Pr}[$ reaching reject $]=1$.

Theorem 20. $R P \subseteq N P$
coRP: $\forall x \in L, \operatorname{Pr}[$ reaching accept] $=1, \forall x \notin L, \operatorname{Pr}[$ reaching reject $] \geq \frac{1}{2}$.
coNP: $\forall x \in L, \operatorname{Pr}[$ reaching accept $]$
$=1, \forall x \notin L, \operatorname{Pr}[$ reaching reject $]>0$.
$B P P$, or bounded error probabilistic polynomial time: $\forall x \in L, \operatorname{Pr}[$ reaching accept $] \geq \frac{2}{3}, \forall x \notin L, \operatorname{Pr}[$ reaching reject $]$ $\geq \frac{2}{3}$.
Lemma 14. $R P \subseteq B P P$
Lemma 15. $c o R P \subseteq B P P$
Lemma 16. $R P\left(\frac{1}{2}\right)=R P\left(\frac{3}{4}\right)$ (proof via amplification)

Lemma 17. RP is closed under composition.

7 Communication Complexity

 Model:- Finite sets X, Y, Z
- Function $f: X \times Y \rightarrow Z$
- Two player, Alice and Bob
- Decide on a communication protocol beforehand
- Alice has $x \in X$, Bob has $y \in Y$
- Goal: collaboratively compute $f(x, y)$ by sending bits back and forth (must end with both side knowing $f(x, y)$)
The trivial prototol:
- Alice sends x to $\operatorname{Bob}(\log |X|)$
- Bob computes and sends $z=$ $f(x, y)$ to Alice $(\log |Z|)$
Total: $\quad \log |X|+\log |Z|$ or $\log |Y|+$ $\log |Z|$

A communication protocol is a binary tree where each node is labelled by either $a_{v}: X \rightarrow\{L, R\}$ or $b_{v}: Y \rightarrow$ $\{L, R\}$ and each leaf is labelled by an element of Z. The depth of the protocol tree is the maximum number of bits sent by the protocol.

The deterministic communication complexity of a function f is

$$
\begin{aligned}
D(f) & =\min _{\text {tree for } f}\left(\max _{(x, y)}(\text { number of bits })\right) \\
& =\min _{\text {tree for } f}(\text { depth of tree })
\end{aligned}
$$

Lemma 18. $D\left(E Q_{n}\right) \leq n+1$
A rectangle in $X \times Y$ is a set of the form $R=A \times B$ where $A \subseteq X$ and $B \subseteq Y . \quad R$ is a rectangle iff $(x, y) \in$ $R \wedge\left(x^{\prime}, y^{\prime}\right) \in R \Leftrightarrow\left(x, y^{\prime}\right) \in R \wedge\left(x^{\prime}, y\right) \in R$

Lemma 19. Let T be a protocol tree, R_{v} be the set of inputs that causes the protocol to arrive at node v. Then R_{v} is a rectangle.

A rectangle is called f monochromatic if $f(x, y)$ is the same for all $(x, y) \in R$.

Let $R_{i} \subset X \times Y$ be a rectangle for $i=1, \ldots, k$. The set $\mathscr{R}=\left\{R_{1}, \ldots, R_{k}\right\}$ is called an f-monochromatic partition (into rectangles) if each R_{i} is f monochromatic, and each $(x, y) \in X \times$ Y is contained in exactly one R_{i}.
$C^{\text {partition }}(f)=\min \{|\mathscr{R}|$
\mathscr{R} is an f-monochromatic partition $\}$
Lemma 20. For any protocol tree T, the rectangles $\{R: v$ is a leaf in $T\}$ are an f-monochromatic partition.

Lemma 21. $\quad C^{\text {partition }}(f) \leq$ $\min _{\text {protocol tree } T} \mid$ number of leaves in $T \mid$

Lemma 22. $D(f) \geq\left\lceil\log _{2} C^{\text {partition }}(f)\right\rceil$
A fooling set $S \subseteq X \times Y$ is a set where all points $(x, y) \in S$ have the same value $f(x, y)=z$, and for any distinct points (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ in S, either $f\left(x, y^{\prime}\right) \neq z$ or $f\left(x^{\prime}, y\right) \neq z$.

Lemma 23. $C^{\text {partition }}(f) \geq|S|+1$, where S is a fooling set for f

Lemma 24. $D(f) \geq\left\lceil\log _{2}(|S|+1)\right\rceil$, where S is a fooling set for f

Lemma 25. $D\left(E Q_{n}\right)=D\left(G T E_{n}\right)=$ $D\left(D I S J_{n}\right)=n+1$

Model for non-deterministic communication complexity:

- Function $f: X \times Y \rightarrow Z$ is known to all
- Bob does not know x, Alice does not know y
- Alice and Bob do not communicate
- Piere tries to force Alice and Bob to accept by sending certificate z. How short can z be?
$N(f)=\min _{\text {nondetprotocol }}$ (length of cert). Or, $N(f)=\min \{k\}$ such that there exist A and B, for all $x \in X, y \in Y$, $f(x, y)=1 \Rightarrow \exists z \in\{0,1\}^{k}, A(x, z)=$ $1 \wedge B(y, z)=1, f(x, y)=0 \Rightarrow \forall z \in$ $\{0,1\}^{k}, A(x, z)=0 \vee B(y, z)=0$.

Lemma 26. $N\left(\neg D I S J_{n}\right) \leq \log n$
Lemma 27. For all f, $D(f)=D(\neg f)$.
Lemma 28. $N\left(\neg E Q_{n}\right) \leq \log (n)+1$
Lemma 29. Let S be a fooling set where $f(x, y)=1$ for all $(x, y) \in S$. Then $N(f) \geq\left\lceil\log _{2}(|S|)\right\rceil$.

Lemma 30. $N\left(E Q_{n}\right) \geq n$
The set $\mathscr{R}=\left\{R_{1}, \ldots, R_{k}\right\}$ is a cover of the 1 -entries (by rectangles) if (1) each R_{i} is a rectangle containing only 1s, and (2) every $(x, y) \in X \times Y$ with $f(x, y)=1$ is contained in at least one R_{i}.
$C^{1 \text {-cover }}(f)=\min \{|\mathscr{R}|$
\mathscr{R} is a cover of the 1-entries $\}$

$$
C^{0 \text { cover }}(f)=C^{1-\text { cover }}(\neg f) .
$$

Lemma 31. $C^{\text {partition }}(f)=$ $C^{1-\text {-cover }}(f)+C^{0 \text {-cover }}(f)$.
Lemma 32. $\quad N(f) \quad=$
$\left\lceil\log _{2}\left(C^{1-\text { cover }(f))\rceil}\right.\right.$

Lemma 33. $D(f) \geq N(f)$
Lemma 34. $D(\neg f)=N(f)$
Theorem 21. Let $f: X \times Y \rightarrow\{0,1\}$ be arbitrary, C_{0} be a cover of the 0 -entries, and C_{1} be a cover of the 1 -entries. Then $D(f)=O\left(\log C_{0} * \log C_{1}\right)$.

Lemma 35. $D(f)=O(N(f) * N(\neg f))$

